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E@JILIBEIUM STATE OF A CUT ALONG A CIRCUMFERENTIAL ARC 
IN COMPLEX STRESS STATE* 

1u.V. ZHITNIKOV and B.M. TULINOV 

Equilibrium state of an arc-like cut in an elastic surface where the crack edges 
interact with each other in shearlike manner according to Coulomb's Law, is analys- 
ed. The nonuniform interaction between the cut edges can lead to formationofzones 
of adhesion and mutual nonzero displacements of the crack edges. In this case a 
nonsingular solution is constructed at the boundaries of the zones mentioned, and 
a method is given for separating such regions. 

Problems in which regions of adhesion exist on the interacting cut edges were discussed 
in /1,2/f. The state of stress of an elastic plane with a circumferential arc-like cut with- 
out friction at the crack edges was investigated in /3,4/. 

In the present paper we consider a cut along a circumference of unit radius. The equa- 
tion of the cut in the XOY coordinate system has the form (a, and PO are coordinates of the 
cut boundaries) 

Mutually perpendicular compressive stresses p,p(jpf),fq/) act at infinity, and the stress 
is directed at the angle y to the OX-axis (Fig.1). The state of stress is described by 
complex Kolosov-Muskhelishvili potentials 

ui* + ue = 2[@ (2) -+ 0* WI 

cI+iTro = Q(z)+- a (+)+z*(z* - -+) Y*(L) 
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Here %=3--l~ for the plane deformation, x-(3-_y)/(l -Y) for the generalized plane state of 
stress, v is the Poisson's ratio, G is shear modulus and erss,tre are components of the stress 
tensor in a polar coordinate system with origin at the point 0. The displacement components 
U,L' along the OX and OY axes of the rectangular XOY coordinate system are connected with 
the components & and ~0 in the polar coordinate system by 

YY y 

+ 

u i_ iv = (IIt + i7+p. (2) 

F The potentials at(z),B(z) must be connected by the following relation 
8 /3/: 

I (D(O)= SZ* (co) (3) 

f 2 

When IZ[-+CO, the complex potentials havethe followingasymptotics: 

IPi Ia,1 
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15 1 -co, O(t) = f, T (2) = r', D (2) = - f*'/r? (41 

%sl 
P = (P + 9)/4, F'= -WP - q)e-Z'Y, Ip j > I*/ 

lgl ---- 
We assume that the cut edges interact with each other along the 

=I2 
whole crack length (a,< O).Mutual displacements may appear at the 

Fig.1 and 2 
m 8 crack when ~je~(<jr,~l, where % =re are the stresses at the site of 

the cut in a rigid solid, and P is the coefficient of friction. 
Fig.2 depicts the distribution of the moduli Of the normal and shear stresses in a solid 

without a cut, along the circumference in question. We shall assume that the arc-like cut is 
situated in a region along which only a single zone of mutual displacement may appear. Such 
a position.ofthe cut can always be shown using a graph depicting the variation in the normal 
and shear stresses (e.g. n&g 0-_~<s (Fig.2). In the zone of adhesion no mutual displace- 
ments appear, therefore we shallregardit asacontinu~,~dfo~ulatethebo~nda~conditionin 
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the region of mutual displacements. In this case the boundary conditions at the cut willhave 
the form 

%,a* = PO,', "AfO,p=fP (5) 
eV+ - iTTo+ = (J?- - izre-, up+ - VI- = 0, a < 8 < p 

The plus or minus sign preceding p can be assigned using the direction of the shear stresses 

appearing at the cut in a rigid solid (e.g. 

for o<~--YJL/~ we have ~*~a=-Pu~*, a, b 
in the case ni2<8--<~1 we have %,e*= Per*, while 

so farunknownregions ofmutualdisplacements). 
Using the relations (l), (5) we arrive at the following conjugation problem: 

(0+ + 0-)(p + i) + (0*+-t 0*-)(P - i) + (6) 

(Q+ + Q-)(p + i) + (Q*+ + Q*-)(p - i) = (I 
0+ - OD--(Q+ - Q-) = 0; 2C[(u'+ - u'-) + i(u’+ - u’-)] = 

it [x (CD+ - W) + (Q+ - Q-)1 

t = 20, a, 4 a < 8 < B < 60 

We shall seek the solution of the system (6) in the form 

(7) 

where we have, with (Z), (3) and third equation of (5) taken into account, (L denotes the 

region of mutual displacements) 

q(e) = - Y$ w’+ - Uf- _+ i (u’+ _ u’-) j t ]=g-ia’ (8) 

(ue+ - “07, 
1 

Do=z c i CL 

The integrals in (7) can be computed at the cut with z+tEL using the Sokhotskii-Plemel' 

formulas /5/. Substituting the expressions (7) for the complex potentials 0(z),Y(z) we find 

that two subsequent equations are satisfied indentically, and the first equation is reduced 

to a singular integral equation the solution of which has the form /5/ 

‘1 (43) (P+ 1) + '1* @a) (P-i) = - & c 
z (t) P (t) dt _L Ci 

t-t, - t”EL 
. ’ = (to) ’ 

C = (1 - ip) 5 ye (t) dt; p (t) ._ 2D,p +I+ + r’t’q (p-i) - 4rp 
L 

I (2) = 1/(z ~ a) (z-b), a = eta, b = ,‘p; 

IzI++=. 
a+b 

z(z)-z--z 

Computing the integral in the right-hand side of (9) we obtain 

11 (t) (P + i) + '1* (t) (P-i) = & (A (t) + C), tEL 

(9) 

(10) 

A (t) = n,t’ +- A,t’ + A,t + A, + + -+ + 

Al = r'(p - I), 
a+b 

A* = 2 r’ (p--i) 
(u - b)2 ~~---_r~(p-~)+~ 

A 

P 
__ (a+b)(a-bb)? 

16 A,-B(q) 

B= 2D,p-44rP, D,=-*~~,,+L) 

Da= -?*'((J+ i)lfab= -Al*i/ab 

Equation (10) contains two unknown constants, c and D,. Multiplying both sides of (10) by 

t-1 and integrating along the cut L, we obtain 

C=-A -All/% 4 3 (11) 

Substituting now the expression for the function ~(8) and using (ll), we arrive at a differ- 

ential equation the solution of which has the form 

(12) 
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R (t) = e-@ s li,t+ K 
2 epe d0 

= (‘) 
n 

i.4, 
F1 = - 

f-1 (a-i- b) 
p+2i ’ F,==T, 

K, = iA, - nbF?(p i_ i) -!- F2(a + b)(p + I!.$) - F,p, K, = ICI* v/ah 

The condition that the displacements are zero at the cut ends and using (12), together yield 
the constant Do. We have 

MC, + M*C; 
% 

t@ 
Do==tzp(C,+c,*) ’ c, = 

c 
-dO 

'a 
+ (1) ’ 

t6sL (13) 

M=- 
ija-_)"A, 

8 -44rp~$-&-iA, 

In the general case the expressions (13), (12) and (8) determine the singular solutions at 
the points t= a,t= b characterized by the intensity coefficients /4,6/ 

I(- =ii:i/Z(9 -a)g'(8), ic+ = lim r/a (p - (e) g’(e); a g 8 q a 
e-8 

The singular shear stresses at the cut near the boundary of the region ofmutualdisplacements 
will always cause the coupling of the clamped segment of the crack, therefore we shall con- 
struct a nonsingular solution at the boundary of the adhesion and mutual displacement zone. 
Following the method given in /?,a/, we shall regard, as a criterion of equilibrium, the 
equality of the stress intensity coefficients to zero 

c + R(t) = 0 (14) 

Equation (14) determines the unknown boundaries of the adhesion and mutual displacement zone. 
If both roots of the equation lie within the cut a,<fl< &, then 
the adhesion zone is adjacent to the right and left tip of the 
initial cut. If on the other hand one of the roots lies out- 
side the cut, then the regions of adhesion which appears is ad- 
jacent to one boundary of the cut, and the zone of mutual dis- 
placement to the other boundary. Thus the equation (14) and 

2 (13),(12),(8),(T) together determine the state of stress in a solid 
weakened by a plane, arc-like crack. 

An an example we shall consider a cut situated in the re- 
gion n/2 < 8< x; p = 0.4; y = 0. In this case we have in the ex- 
pression (5) p= + [I. The condition of crack growth has the 
form /4/ I@> K, where K, denotes the coupling modulus. Fig.3 
depicts a graph showing the dependence of the intensity coef- 
ficients on the stressesp,g (IL- corresponds to the solid curve 
and K+ to the dashed curve) and the length of displacement 

Fig.3 zone. The curves on the left and right correspond to the cut 
parameters ac = n/2, &,= m and -a, = n/2, PO = 3ni4 respectively. 

We see here that the intensity coefficients increase with increasing shear stress, and this 
may lead to cracks propagation even in the presence of a zone of adhesion. 

The proposed method of determining exact boundaries of the adhesion and mutual displace- 
ment zones can be generalized to include the construction of a nonsingular solution for re- 
ctilinear and curvilinear cuts in a complex stress state. 
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